博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Word2Vec之Skip-Gram与CBOW模型原理
阅读量:6442 次
发布时间:2019-06-23

本文共 7359 字,大约阅读时间需要 24 分钟。

word2vec是一个开源的nlp工具,它可以将所有的词向量化。至于什么是词向量,最开始是我们熟悉的one-hot编码,但是这种表示方法孤立了每个词,不能表示词之间的关系,当然也有维度过大的原因。后面发展出一种方法,术语是词嵌入。

[1.词嵌入]

词嵌入(Word Embedding)是NLP中语言模型与表征学习技术的统称,它就是将one-hot表示的词“嵌入”到一个低维空间中,简单点就是嵌入矩阵E与词的one-hot的乘积,数学关系为:

img_0bda35e61a979490a41343cc77b5cc80.png
举个例子,如果有2000个词的字典,那么每个词的one-hot形式就是2000*1,如果学习到嵌入矩阵为300 * 2000的化,那么将生成300 * 1的词向量,就那么简单。还有,嵌入矩阵一般这样表示,频数是统计来的:
img_565db80ec219c61577bbbd1eb57c4eff.png

[2.Word2Vec]

Word2Vec是很流行的词嵌入算法,它通常包含两个模型,一个是Skip-Gram模型,这个模型的思想是,选定中间的词(Context),然后在这个词的正负n个词内选择目标词(Target)与之对应,构造一个用Context预测输出为Target的监督学习问题,训练一个如下图结构的网络(吴恩达的课件):

img_1f64ed81911e01f38c9779fb0a651cc5.png
Skip-Gram
其实还有其他的一些细节,但是说的太细了,写不完,具体我一会慢慢完善。

还有一个是CBOW(Continuous Bag-of-Words Model),它的工作原理与Skip-Gram原理相反,他是用上下文预测中间的词。

接下来,我将用tensorflow来实现一个Skip-Gram,代码来自于tensorflow的word2vec的改编,是基于这位,如果想看可以去github看tensorflow的例子。不罗嗦,直接上代码。

3. 高亮一段代码[^code]

import timeimport numpy as npimport tensorflow as tfimport randomfrom collections import Counterwith open('data/text8') as f:    text = f.read()#定义函数来完成数据的预处理def preprocess(text, freq=5):    '''    对文本进行预处理    :param text: 文本数据    :param freq: 词频阈值    '''    #对文本中的符号进行替换,下面都是用英文翻译来替代符号    text = text.lower()    text = text.replace('.', ' 
') text = text.replace(',', '
') text = text.replace('"', '
') text = text.replace(';', '
') text = text.replace('!', '
') text = text.replace('?', '
') text = text.replace('(', '
') text = text.replace(')', '
') text = text.replace('--', '
') text = text.replace(':', '
') words = text.split() #删除低频词,减少噪音影响 word_counts = Counter(words) trimmed_words = [word for word in words if word_counts[word] > freq] #这句话很好,可以模仿 return trimmed_words#清洗文本并分词words = preprocess(text)# print(words[: 200])#构建映射表vocab = set(words)vocab_to_int = {w: c for c, w in enumerate(vocab)}int_to_vocab = {c: w for c, w in enumerate(vocab)}print('total words: {}'.format(len(words))) #还有这种输出方法,学习一下print('unique words: {}'.format(len(set(words))))#对原文本进行vocab到int的转换int_words = [vocab_to_int[w] for w in words]#--------------------------------------------------------------------采样t = 1e-5 #t值threshold = 0.8 #删除概率阈值#统计单词出现频数int_word_counts = Counter(int_words)total_count = len(int_words)#计算单词频率word_freqs = {w: c / total_count for w, c in int_word_counts.items()}#计算单词被删除的概率prob_drop = {w: 1 - np.sqrt(t / word_freqs[w]) for w in int_word_counts}#对单词进行采样train_words = [w for w in int_words if prob_drop[w] < threshold]print(len(train_words))#-----------------------------------------------------------------------采样#获得input word的上下文单词列表def get_targets(words, idx, window_size = 5): ''' 获得input word的上下文单词列表 :param words: 单词列表 :param idx: input word 的索引号 :param window_size: 窗口大小 ''' target_window = np.random.randint(1, window_size + 1) #从1到 window_size+1 之间的数,包括1,不包括最后一个 #这里要考虑input word前面单词不够的情况,但是为什么没有写后面单词不够的情况呢, #因为python里面的list取分片越界时会自动只取到结尾的 start_point = idx - target_window if (idx - target_window) > 0 else 0 #虽说不能写三元表达式,但这个挺不错的 end_point = idx + target_window #output words(即窗口中的上下文单词,不包含目标词,只是它的上下文的词) targets = set(words[start_point: idx] + words[idx + 1: end_point + 1]) return list(targets)#构造一个获取batch的生成器def get_batches(words, batch_size, window_size = 5): ''' 构造一个获取batch的生成器 ''' n_batches = len(words) // batch_size #仅取full batches words = words[: n_batches * batch_size] for idx in range(0, len(words), batch_size): #range(start, stop[, step]) x, y = [], [] batch = words[idx: idx + batch_size] for i in range(len(batch)): batch_x = batch[i] batch_y = get_targets(batch, i, window_size) #从一个batch的第0位开始,一直往下滑,直到最后一个 #由于一个input word会对应多个output word,因此需要长度统一 x.extend([batch_x] * len(batch_y)) y.extend(batch_y) yield x, y#构建网络,该部分主要包括:输入层,Embedding,Negative Samplingtrain_graph = tf.Graph()with train_graph.as_default(): inputs = tf.placeholder(tf.int32, shape=[None], name='inputs') labels = tf.placeholder(tf.int32, shape=[None, None], name='labels') #一般是[batch_size, num_true],num_true一般为1vocab_size = len(int_to_vocab)embedding_size = 200 #嵌入维度with train_graph.as_default(): #嵌入层权重矩阵 embedding = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1, 1)) #tf.random_uniform((4, 4), minval=low,maxval=high,dtype=tf.float32)))返回4*4的矩阵 # ,产生于low和high之间,产生的值是均匀分布的。 embed = tf.nn.embedding_lookup(embedding, inputs) #[None, embedding_size],一般是[batch_size, embedding_size]#-----------------------------------------------------------负采样(Negative Sampling)n_sampled = 100with train_graph.as_default(): sotfmax_w = tf.Variable(tf.truncated_normal([vocab_size, embedding_size], stddev=0.1)) #[vocab_size, dim], dim就是embedding_size sotfmax_b = tf.Variable(tf.zeros(vocab_size)) #[vocab_size] #计算negative sampling下的损失 #tf.nn.sampled_softmax_loss()进行了negative sampling,它主要用在分类的类别较大的情况 loss = tf.nn.sampled_softmax_loss(sotfmax_w, sotfmax_b, labels, embed, n_sampled, vocab_size) cost = tf.reduce_mean(loss) optimizer = tf.train.AdamOptimizer().minimize(cost)#-----------------------------------------------------------负采样#为了直观看到训练结果,我们将查看训练出的相近语义的词with train_graph.as_default(): #随机挑选一些单词 valid_size = 16 valid_window = 100 #从不同位置各选8个词 valid_examples = np.array(random.sample(range(valid_window), valid_size // 2)) #random.sample(seq, n) 从序列seq中选择n个随机且独立的元素 #np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]]),结果是array([1, 2, 3, 4, 5, 6, 7, 8, 9]) valid_examples = np.append(valid_examples, random.sample(range(1000, 1000 + valid_window), valid_size // 2)) valid_size = len(valid_examples) #验证单词集 valid_dataset = tf.constant(valid_examples, dtype=tf.int32) #计算每个词向量的模并进行单位化 norm = tf.sqrt(tf.reduce_sum(tf.squeeze(embedding), 1, keep_dims=True)) normalized_embedding = embedding / norm #查找验证单词的词向量 valid_embedding = tf.nn.embedding_lookup(normalized_embedding, valid_dataset) #计算余弦相似度 similarity = tf.matmul(valid_embedding, tf.transpose(normalized_embedding))#进行训练epochs = 10 #迭代次数batch_size = 1000 #batch大小window_size = 10 #窗口大小with train_graph.as_default(): saver = tf.train.Saver() #文件存储with tf.Session(graph=train_graph) as sess: iteration = 1 loss = 0 sess.run(tf.global_variables_initializer()) for e in range(1, epochs + 1): batches = get_batches(train_words, batch_size, window_size) start = time.time() for x, y in batches: feed = { inputs : x, labels : np.array(y)[:, None] } train_loss, _ = sess.run([cost, optimizer], feed_dict=feed) loss += train_loss if iteration % 100 == 0: end = time.time() print('Epoch {}/{}'.format(e, epochs), 'Iteration: {}'.format(iteration), 'Avg. Training loss: {:.4f}'.format(loss / 100), #这是一种数字格式化的方法,{:.4f}表示保留小数点后四位 '{:.4f} sec / batch'.format((end-start) / 100)) loss = 0 start = time.time() #计算相似的词 if iteration % 1000 == 0: #计算similarity sim = similarity.eval() for i in range(valid_size): valid_word = int_to_vocab[valid_examples[i]] top_k = 8 #取最相似单词的前8个 nearest = (-sim[i, :]).argsort()[1: top_k + 1] log = 'Nearest to [%s]:' % valid_word for k in range(top_k): close_word = int_to_vocab[nearest[k]] log = '%s%s,' % (log, close_word) print(log) iteration += 1 save_path = saver.save(sess, 'model/text8.ckpt') embed_mat = sess.run(normalized_embedding)#下面这部分代码出错了,暂时没明白咋回事import matplotlib.pyplot as pltfrom sklearn.manifold import TSNEviz_words = 500tsne = TSNE()embed_tsne = tsne.fit_transform(embed_mat[:viz_words, :])fig, ax = plt.subplots(figsize=(14, 14))for idx in range(viz_words): plt.scatter(*embed_tsne[idx, :], color='steelblue') plt.annotate(int_to_vocab[idx], (embed_tsne[idx, 0], embed_tsne[idx, 1]), alpha=0.7)

转载地址:http://kscwo.baihongyu.com/

你可能感兴趣的文章
王垠的40行代码,究竟diao在哪里
查看>>
使用云巴做推送和聊天遇到的「丢消息」问题
查看>>
Linux
查看>>
Netty 源码阅读入门实战(四)-NioEventLoop
查看>>
7-玩转数据结构-集合与映射
查看>>
深入理解 React JS 中的 setState
查看>>
关于MVC控制器导出Excel时MemoryStream流已关闭的问题
查看>>
NG-ZORRO-MOBILE 0.11.9 发布,基于 Angular 7 的 UI 组件
查看>>
【iOS 开发】UIApplicationDelegate 中两个值得注意的地方
查看>>
Falcor 2.0.6 发布,网飞开源的高效 JavaScript 数据抓取库
查看>>
阿里云ECS 、linux安装nginx问题
查看>>
用 React 分页显示数据
查看>>
安装MXNet
查看>>
Python:用numpy+OpenCV快速实现矫正图像的功能
查看>>
自媒体百花齐放,又一个WiFi自媒体自媒体平台偷偷上线!
查看>>
思辨领域模型--DDD≠数据库关系模型
查看>>
Can't create handler inside thread that has not called Looper.prepare()
查看>>
初识 Spring(08)---(jdbc)
查看>>
BrowserSync -- 你值得拥有的多浏览器测试工具
查看>>
正则表达式 - 贪婪与非贪婪(惰性)
查看>>